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The geology
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The history

* Impact happened approx. 50,000 years ago

e 1871 - The first written report was by a man by the name of Franklin
» 1886 — iron-nickel meterorites were found by a sheep herder

e 1891 - site visited by USGS who deemed it to be volcanic

* 1903 - site was purchased by Daniel Moreau Barringer

* 1941 — the Barringer family entered into a lease with Bar T Bar Ranch
Company and formed the Meteor Crater Enterprises Inc which
is still running today.
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A brief look at
naturally occurring
fission reactors

Anne Hunt



Uranium
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Uranium

* 2 isotopes
° 235U

° 238U

 Both radioactive but half lives differ

e 235U: 700 million years
 238: 4.6 billion years

* Natural relative abundance
e 235U: 0.72%
e 238J: 99.28%
* Relative adundance is remarkably consistent worldwide...



Relative abundance

* ...except in zones in the uranium
mines at Oklo, Okelobondo and

Bangombé in the Franceville :
BaSin, Gabon CAMEROON CQ&’
Atlantic
* In these zones e
e 235U is low as 0.38 % 0 —
* an assembly of the end-member Gl .

fission products which result from
sustained nuclear reactions in a
nuclear reactor




Geological setting

* Uraninite deposits

* |located near the top of a succession
of sandstones and conglomerates

* Uraninite deposits

* Formed by dissolution-precipitation
processes

* From which approximately 28,000
tonnes of uranium ore have been
mined

* Age: 1950 + 40 Ma - Proterozoic

RIT

s

/ OKLO open pal

FB black shales 15000
FB sandsiones
Mineralized layer .
FA sandstones

Archean basements’”

Reactor

Gauthier-Lafaye et al 1996



Geological setting

e U-bearing conglomerates

* Buried by deltaic marine deposits of Upper FA formation and FB shales
* U(VI) oxides

e Shales were rich in organic matter
* Burial at depths of up to 4 km

* Temperature and pressure conditions of “oil window” causing conversion to
hydrocarbons
e Hydrocarbons
* migrated to the FA sandstone reservoir rock
* Accumulated in structural traps



Geological setting

 Uranium mineralisation
* fluids containing U(VI) oxides meet fluids bearing hydrocarbons
* hydrocarbons reduce U(VI) oxides to U(IV) oxides

* Uranium is precipitated as uraninite (UO,) in the sandstone in

e pores
* fractures

* Zones
* uraninite seams are depleted in uranium but contain fission products



Nuclear fission

* Inherently unstable nuclei of radioactive isotopes “decay”
spontaneously emitting a neutron

* Decay occurs more readily if provoked by disturbance of the structure
of the nucleus

* Most readily caused by the absorption of a neutron

* Certain isotopes, termed “fissile”, will absorb a neutron
o 2351 js fissile
o 238 js not fissile

235U +Nn= 236U



Nuclear fission

* The fissile nucleus
becomes even more
unstable and splits into

e 2 fission nuclei

e 2 to 3 free neutrons
travelling at high speed




Nuclear fission

* Total mass of parts is very slightly
less than original atom

* Missing mass has been converted /
into energy (released in the form / ®
of heat) /

e E=mc? ., @

14lBa



Nuclear fission

* These neutrons may go on to trigger fission of neighbouring fissile
isotopes — a chain reaction

* A chain reaction may be
* Uncontrolled — runaway nuclear reaction — basis of atomic weapons or
e Controlled (“moderated”) - basis of nuclear power

* For a controlled nuclear reaction, neutron speed is crucial

* Too fast — will go through nuclei = no neutron capture — chain reaction shuts
down

* Too slow — insufficient energy = no neutron capture — chain reaction shuts
down

* Goldilocks speed = neutron capture followed by fission



Nuclear fission

* High speed neutrons
* inelastic collisions with things of similar mass will slow down neutrons
emitted by fission
* In liquid form, some water molecules dissociate into hydrogen ions and
oxygen ions
* A hydrogen ion has the same mass as a neutron

* Water is a good moderator



Criteria for self-sustaining chain fission
reactions i.e. a nuclear reactor

Sufficient fuel
Sufficiently high ratio of 23°U: 233U
Containment

B W

Moderator



Conditions at Oklo

1. Sufficient fuel
* U ore seams are at least 0.5 m and
typically contained in layers 2m
thick
» Sufficient concentration of
uranium-bearing minerals
* Minimum requirement of 10%
* In reactor zones, typically 20 to 87%

Remains of reactor at location 2



Conditions at Oklo

235U/ 23811 + 100
40

2. Sufficiently high ratio of 23°U: 238U

* Based on the half lives, extrapolation -
backwards to nearly 2Ga indicates that
the relative abundance was

approximately 201
U—-235:3.68% OKLO
U—238:96.32% 10-
3.68 v
* Fuel for nuclear power plant: 00 . . . .
0 1000 2000 3000 4000 Ma.

approximately U —235: 3 to 5%

Gauthier-Lafaye 2002



Conditions at Oklo

3. Containment
* Enveloped by clay minerals reactor zone

e e.g.illite
e Quartz-rich sandstone are

natural neutron reflectors
Qranium ore 20-87m

e Sharp boundary between
reactor zone and underlying Upsior (5 sedsians
sandstone

clay
» often with a thin layer of
hematite (Fe,O,)

hematite



Conditions at Oklo

4. Moderator

* Meteoric water seeping down
through porous rocks and faults

.........

fass Conglomerate
=] Coarse sandstone
[+ Fine sandstone
[==] FB black shales
F"#7 Clays of the reactor
- Core of the reactor

mul] Organic matter

.. 4 .
...........

— Fracture

Rector 9 from earlier figure Gauthier-Lafaye et al 1996



Duration of Oklo fission reactors

e Short-term
* Heat generated by the fission reactions caused the water to boil away
* Without a moderator, the chain reactions shut down

* When cooled sufficiently for water to flow back, neutron speed is moderated
again and chain reactions recommence

* Calculations indicate
* Activity — approximately 30 minutes
e Shut down — approximately 2 hours 30 minutes
* i.e.a 3 hourcycle

* Long-term
* Differs between reactor sites — approximate range 62,000 to 270,000 years
* Analyses of abundances of fission products



Depleted Uranium

* Research into current conditions at Oklo - useful analogue in
connection with disposal of nuclear fuels
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Burnham Beeches — 25miles west of London
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. Water Observation

8 10%% borehole BB32
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vdrology the Basics
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During summer — less rain, more evaporation, take-up by plants — water levels fall

During winter — more rain, less evaporation, reduced plant take-up — water levels rise
more run-off, bogy areas and springs more active



Despite strong opposition, in 1982
permission was given to extract

Burnham BeechesSs=« gravels from a lower Terrace (Boyn
Hill) south of Burnham Beeches.

O

T
Concerns about impact on Burnham
Beeches by lowering water table. If a
hydraulic connection exists. In 1988 this
resulted in a program of boreholes being
drilled and monitored.
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unts Wood = =~
‘arm

East Burnham
Quarry



Based on borehole BB44. ( ST 95367 84326) near to Stag Public House
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Burnham Beeches

hydrological
summary
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Streams in and around Burnham Beeches
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Clays and silts — springs, mires, streams.
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Thank you |

| hope this talk has inspired you to visit
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A Bit of Brazil In Bath

Bath Christmas Social 2021 (Geology of Kitchen Worktops).

* Star of The Show....
Paleoproterozoic polymict metaconglomerate (Eastern Brazil)

On public display in Bath.....
e W
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(Verde Marinace) .

P 3



Varieties...

(Negro Marinace)

University College Hospital London (Monolith and Shadow sculpture by John Aitken)
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Geological Context
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Sao Franciso Craton : Precambrian Sequence (simplified)
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Paleoproterozoic Rift Geometries (schematic)

D Sandstones - Peliles

Iron formations Rhyolites

Sm/Nd — 2021 + 96 Ma U/Pb (this work) —2161.1 + 4 Ma

(Oliveira, 2016) Lu-Hf (Ty,) — 2440 to 3258 Ma
|| Phosphorites EHF , — +3.96 0 -8.90

Arkose, graywackes, Basalts, komatiitic

and siltstones basalts and komatiites
- Dolostones Basement rocks
- Pyritic chert ! Orthogneisses

Northern Espinhago range Chapada Diamantina
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= J/ Normal fault _ -100m _ sy
Omeresve-
Fig. 16. Schematic illustration of the basin-fill evolution for the Terra Vermelha Group and related facies association.
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| < Basic volcanic rocks

Acid effusive rocks



Metasediment Outcrops

a) Actinolite Marble

d) Phyllite

c) Metachert
(pyritic massive)

e) Quartzite with
depositional with il 2 - — * Sl 5% ‘b
light (quartz-rich) \ R 1 AR TR (v . o, & i N * f) Magnetite-

and dark (tremolite S d ) e W bearing banded
& tourmaline-rich) iron formation
layers



Area of Interest (Northern Espinhaco & Chapada Diamantina)
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F. Guadagnin et al. / Gondwana Research 27 (2015) 363-376



Surface Geology / Quarries [ ) s R oo

Neoproterozoic (635 My — 1 By)

Mesoproterozoic (1.0 By — 1.6 By)

Paleoproterozoic (1.6 By — 1.8 My)

Archaean (> 2.5 By)

Basic Intrusives (circa 850 My) _I_
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Record of a Statherian rift-sag basin in the Central

Espinhaco Range: Facies characterization and
geoch ronology. Alice Fernanda de Oliveira Costa (2018)
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Fig. 3. General stratigraphic columns showing disposition of the different facies association and stratigraphic units.



Fig. 5. Lithofacies fro Fi association: (a) Massive matrix-to clast-suported conglomerate with disorganized framework; (b) layer of
matrix-supported with scattered boulders; (c) layer of clast-supported conglomerate with angular clasts; (d) matrix-supported conglomerate
separated by thin layers of sandstone (Sm).



Fig 7. Lithofacies from FA2 association: (a) Conglomerate Gmm with a sandstone St lens; (b) Matrix-supported polymictic conglomerate (Gm lithofades); (c) Matrix-supported
conglomerate with Bif's clasts; (d) Large-scale cross-stratified sandstone (Sic lithofacies) with planarcross bedded sandstone bed (lithofacies Sp); (e) Enlarged view of lith-
ofacies Sp marked by heavy minerals; (f) Enlarged view of lithofacies Slc.




Sequence stratigraphy of the mixed wave-tidal-dominated Mesoproterozoic
sedimentary succession in Chapada Diamantina Basin, Espinhaco
supergroup- Ne/Brazil E. G. de Souza (2019)
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Fig. 4. A) Main characteristics of alluvial deposits (see Table 2); B) The single occurrence as a regular and thin layer with wide lateral extent, bounded by continuous
and undulated surfaces; C) Layer details and representation of main larger clasts with vertically orientation; D) Imbricated and parallel clasts with the major axis to
NW; E and F) Wide variation of form and composition of clasts, where the larger are subrounded to rounded while smallers are angular and low sphericity.
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THE END!
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