United Stat NEVADA Denvero UTAH COLORADO Las Vegas Meteor Crater Natural Landmark Angeles ARIZONA NEW MEXICO Phoenix San Diego Tucson Ciudad Juárez BAJA CALIFORNIA SONORA CHIHUAHUA COAHUILA Google Map data ©2023 Google, INEGI United Kingdom Terms ## Location #### Colorado Plateau ## The geology # Geological Map of Meteor Crater Arizona Created by Gene Shoemaker, 1960 ## The history - Impact happened approx. 50,000 years ago - 1871 The first written report was by a man by the name of Franklin - 1886 iron-nickel meterorites were found by a sheep herder - 1891 site visited by USGS who deemed it to be volcanic - 1903 site was purchased by Daniel Moreau Barringer - 1941 the Barringer family entered into a lease with Bar T Bar Ranch Company and formed the Meteor Crater Enterprises Inc which is still running today. ## THE END OF PART 1.... A brief look at naturally occurring fission reactors ## Uranium - Actinide - Atomic number 92 | V-T-E Periodic table |----------------------|--|--------------------------------------|---|---------------------------------------|--|-------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|---|--|--|---------------------------------------|--------------------------------------|--|--|---------------------------------------|--------------------------------------| | Group | 1
Hydrogen
&
alkali
metals | Alkaline
earth
metals | | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13
Triels | 14
Tetrels | 15
Pnicto-
gens | 16
Chalco-
gens | 17
Halogens | 18
Noble
gases | | Period
1 | Hydro-
gen
1
H
1.0080 | | | | | | | | | | | | | | | | | | Helium
2
He
4.0026 | | 2 | Lithium
3
Li
6.94 | Beryllium
4
Be
9.0122 | | | | | | | | | | | | 5
B
10.81 | 6
C
12.011 | Nitrogen
7
N
14.007 | 0xygen
8
0
15.999 | Fluorine
9
F
18.998 | Neon
10
Ne
20.180 | | 3 | Sodium
11
Na
22.990 | Magne-
sium
12
Mg
24.305 | | | | | | | | | | | | Alumin-
ium
13
Al
26.982 | Silicon
14
Si
28.085 | Phosphorus
15
P
30.974 | Sulfur
16
S
32.06 | Chlorine
17
Cl
35.45 | Argon
18
Ar
39.95 | | 4 | Potas-
sium
19
K
39.098 | 20
Ca
40.078 | | Scandium 21 Sc 44.956 | Titanium
22
Ti
47.867 | Vana-
dium
23
V
50.942 | Chrom-
ium
24
Cr
51.998 | Manga-
nese
25
Mn
54.938 | 26
Fe
55.845 | 27
Co
58.933 | 28
Ni
58.693 | 29
Cu
63.548 | Zinc
30
Zn
65.38 | 31
Ga
69.723 | Germa-
nium
32
Ge
72.630 | 33
As
74.922 | Sele-
nium
34
Se
78.971 | 35
Br
79.904 | 36
Kr
83.798 | | 5 | Rubid-
ium
37
Rb
85.468 | Stront-
ium
38
Sr
87.62 | | Yttrium
39
Y
88.906 | Zirco-
nium
40
Zr
91.224 | 41
Nb
92.908 | Molyb-
denum
42
Mo
95.95 | Tech-
netium
43
Tc
[97] | Ruthe-
nium
44
Ru
101.07 | Rho-
dium
45
Rh
102.91 | Pallad-
ium
46
Pd
108.42 | 47
Ag
107.87 | Cad-
mium
48
Cd
112.41 | 49
In
114.82 | Tin
50
Sn
118.71 | Anti-
mony
51
Sb
121.76 | Tellur-
ium
52
Te
127.60 | 53

126.90 | Xenon
54
Xe
131.29 | | 6 | Caesium
55
Cs
132.91 | 56
Ba
137.33 | * | Lute-
tium
71
Lu
174.97 | 72
Hf
178.49 | Tanta-
lum
73
Ta
180.95 | Tung-
sten
74
W
183.84 | Rhe-
nium
75
Re
186.21 | 76
Os
190.23 | 77
 Ir
 192.22 | Plat-
inum
78
Pt
195.08 | 79
Au
198.97 | Mercury
80
Hg
200.59 | Thallium
81
TI
204.38 | 82
Pb
207.2 | Bismuth
83
Bi
208.98 | Polo-
nium
84
Po
[209] | Astatine
85
At
[210] | 86
Rn
[222] | | 7 | Fran-
cium
87
Fr
[223] | 88
Ra
[226] | * | Lawren-
cium
103
Lr
[266] | Ruther-
fordium
104
Rf
[267] | Dub-
nium
105
Db
[268] | Sea-
borgium
106
Sg
[289] | Bohrium
107
Bh
[270] | Has-
sium
108
Hs
[269] | Meit-
nerium
109
Mt
[278] | Darm-
stadtium
110
Ds
[281] | Roent-
genium
111
Rg
[282] | Coper-
nicium
112
Cn
[285] | Nihon-
ium
113
Nh
[286] | Flerov-
ium
114
Fl
[289] | Moscov-
ium
115
Mc
[290] | Liver-
morium
116
Lv
[293] | Tenness-
ine
117
Ts
[294] | Oga-
nesson
118
Og
[294] | | | | | * | Lan-
thanum
57
La
138.91 | 58
Ce
140.12 | Praseo-
dymium
59
Pr | Neo-
dymium
60
Nd
144.24 | Prome-
thium
61
Pm | Sama-
rium
62
Sm
150.36 | Europ-
ium
63
Eu
151.98 | Gadolin-
ium
64
Gd
157.25 | Terbium
65
Tb
158.93 | Dysprosium
66
Dy
162.50 | Hol-
mium
67
Ho
164.93 | 68
Er
167.26 | Thulium
69
Tm
168.93 | Ytter-
bium
70
Yb
173.05 | | | | | | | * | Actin-
ium
89
Ac
[227] | 7horium
90
7h
232.04 | /_ | 92
U
238.03 | == | Pluto-
nium
94
Pu
[244] | Ameri-
cium
95
Am
[243] | Curium
96
Cm
[247] | Berkel-
ium
97
Bk
[247] | Califor-
nium
98
Cf
[251] | Einstei-
nium
99
Es
[252] | Fer-
mium
100
Fm
[257] | Mende-
levium
101
Md
[258] | Nobel-
ium
102
No
[259] | | | #### Uranium - 2 isotopes - 235_U - 238 - Both radioactive but half lives differ - ²³⁵U: 700 million years - ²³⁸U: 4.6 billion years - Natural relative abundance - ²³⁵U: 0.72% - ²³⁸U: 99.28% - Relative adundance is remarkably consistent worldwide... ## Relative abundance - ...except in zones in the uranium mines at Oklo, Okelobondo and Bangombé in the Franceville Basin, Gabon - In these zones - ²³⁵U is low as 0.38 % - an assembly of the end-member fission products which result from sustained nuclear reactions in a nuclear reactor # Geological setting - Uraninite deposits - located near the top of a succession of sandstones and conglomerates - Uraninite deposits - Formed by dissolution-precipitation processes - From which approximately 28,000 tonnes of uranium ore have been mined - Age: 1950 ± 40 Ma Proterozoic Gauthier-Lafaye et al 1996 # Geological setting - U-bearing conglomerates - Buried by deltaic marine deposits of Upper FA formation and FB shales - U(VI) oxides - Shales were rich in organic matter - Burial at depths of up to 4 km - Temperature and pressure conditions of "oil window" causing conversion to hydrocarbons - Hydrocarbons - migrated to the FA sandstone reservoir rock - Accumulated in structural traps # Geological setting - Uranium mineralisation - fluids containing U(VI) oxides meet fluids bearing hydrocarbons - hydrocarbons reduce U(VI) oxides to U(IV) oxides - Uranium is precipitated as uraninite (UO₂) in the sandstone in - pores - fractures - Zones - uraninite seams are depleted in uranium but contain fission products - Inherently unstable nuclei of radioactive isotopes "decay" spontaneously emitting a neutron - Decay occurs more readily if provoked by disturbance of the structure of the nucleus - Most readily caused by the absorption of a neutron - Certain isotopes, termed "fissile", will absorb a neutron - ²³⁵U is fissile - ²³⁸U is not fissile $$^{235}U + n = ^{236}U$$ - The fissile nucleus becomes even more unstable and splits into - 2 fission nuclei - 2 to 3 free neutrons travelling at high speed - Total mass of parts is very slightly less than original atom - Missing mass has been converted into energy (released in the form of heat) - $E = mc^2$ - These neutrons may go on to trigger fission of neighbouring fissile isotopes – a chain reaction - A chain reaction may be - Uncontrolled runaway nuclear reaction basis of atomic weapons or - Controlled ("moderated") basis of nuclear power - For a controlled nuclear reaction, neutron speed is crucial - Too fast will go through nuclei = no neutron capture chain reaction shuts down - Too slow insufficient energy = no neutron capture chain reaction shuts down - Goldilocks speed = neutron capture followed by fission - High speed neutrons - inelastic collisions with things of similar mass will slow down neutrons emitted by fission - In liquid form, some water molecules dissociate into hydrogen ions and oxygen ions - A hydrogen ion has the same mass as a neutron - Water is a good moderator # Criteria for self-sustaining chain fission reactions i.e. a nuclear reactor - 1. Sufficient fuel - 2. Sufficiently high ratio of ²³⁵U: ²³⁸U - 3. Containment - 4. Moderator #### 1. Sufficient fuel - U ore seams are at least 0.5 m and typically contained in layers 2m thick - Sufficient concentration of uranium-bearing minerals - Minimum requirement of 10% - In reactor zones, typically 20 to 87% Remains of reactor at location 2 - 2. Sufficiently high ratio of ²³⁵U: ²³⁸U - Based on the half lives, extrapolation backwards to nearly 2Ga indicates that the relative abundance was approximately U – 235: 3.68% U – 238: 96.32% • Fuel for nuclear power plant: approximately U – 235: 3 to 5% Gauthier-Lafaye 2002 #### 3. Containment - Enveloped by clay minerals - e.g. illite - Quartz-rich sandstone are natural neutron reflectors - Sharp boundary between reactor zone and underlying sandstone - often with a thin layer of hematite (Fe₂O₃) #### 4. Moderator Meteoric water seeping down through porous rocks and faults Rector 9 from earlier figure Gauthier-Lafaye et al 1996 ## Duration of Oklo fission reactors #### Short-term - Heat generated by the fission reactions caused the water to boil away - Without a moderator, the chain reactions shut down - When cooled sufficiently for water to flow back, neutron speed is moderated again and chain reactions recommence - Calculations indicate - Activity approximately 30 minutes - Shut down approximately 2 hours 30 minutes - i.e. a 3 hour cycle #### Long-term - Differs between reactor sites approximate range 62,000 to 270,000 years - Analyses of abundances of fission products ## Depleted Uranium Research into current conditions at Oklo - useful analogue in connection with disposal of nuclear fuels ## References - A. P. Meshik, C. M. Hohenberg, and O. V. Pravdivtseva "Record of Cycling Operation of the Natural Nuclear Reactor in the Oklo/Okelobondo Area in Gabon," Phys. Rev. Lett. 93, 182302 (2004). - Janeczek, J. Mineralogy and Geochemistry of Natural Fission Reactors in Gabon. Reviews in Mineralogy Volume 38 p.321 - Meshik, A. P. (November 2005). <u>"The Workings of an Ancient Nuclear Reactor"</u>. Scientific American. **293** (5): 82–6, 88, 90–1. <u>Bibcode:2005SciAm.293e..82M</u>. <u>doi:10.1038/scientificamerican1105-82</u>. <u>PMID</u> <u>16318030</u>. - Gauthier-Lafaye, F.; Holliger, P.; Blanc, P.-L. (1996). "Natural fission reactors in the Franceville Basin, Gabon: a review of the conditions and results of a "critical event" in a geologic system". Geochimica et Cosmochimica Acta. 60 (25): 4831–4852. <u>Bibcode</u>: 1996GeCoA..60.4831G. <u>doi</u>: 10.1016/S0016-7037(96)00245-1. - Davis, E. D.; Gould, C. R.; Sharapov, E. I. (2014). "Oklo reactors and implications for nuclear science". International Journal of Modern Physics E. 23 (4): 1430007—236. <u>arXiv:1404.4948</u>. <u>Bibcode:2014IJMPE..2330007D</u>. <u>doi:10.1142/S0218301314300070</u>. <u>ISSN</u> 0218-3013. S2CID 118394767. - Gauthier-Lafaye, F. (2002). "2 billion year old natural analogs for nuclear waste disposal: the natural nuclear fission reactors in Gabon (Africa)". Comptes Rendus Physique. 3 (7–8): 839–849. <u>Bibcode:2002CRPhy...3..839G. doi:10.1016/S1631-0705(02)01351-8</u>. # THE END OF PART 2..... # Burnham Beeches Hydrology **Bath Geological Society** Graham Hickman May 2023 #### Burnham Beeches – 25miles west of London Northern Edge of Thames Valley, Western Edge of London Basin Ancient Beech Pollards — SSSI, thin sandy soils Water observation bore holes # Hydrology the Basics During summer – less rain, more evaporation, take-up by plants – water levels fall During winter – more rain, less evaporation, reduced plant take-up – water levels rise more run-off, bogy areas and springs more active Despite strong opposition, in 1982 permission was given to extract gravels from a lower Terrace (Boyn Hill) south of Burnham Beeches. Concerns about impact on Burnham Beeches by lowering water table. If a hydraulic connection exists. In 1988 this resulted in a program of boreholes being drilled and monitored. East Burnham Quarry Winterhill Terrace Quaternary ~0.45Ma Lambeth 56-54Ma Group 50 White Chalk with flints Chalk – Upper Cretaceous ~80Ma # Streams in and around Burnham Beeches Springs develop at interface between gravels and clays, notice also break in slope Clays and silts – springs, mires, streams. Swilly Pond May 9th 2010 Swilly pond Jan 3rd 2010 I hope this talk has inspired you to visit # THE END OF PART 3..... # A Bit of Brazil In Bath Bath Christmas Social 2021 (Geology of Kitchen Worktops). Star of The Show.... Paleoproterozoic polymict metaconglomerate (Eastern Brazil) #### On public display in Bath..... ### Varieties... # University College Hospital London (Monolith and Shadow sculpture by John Aitken) # **Geological Context** Phanerozoic Cover Pan-African Orogenic Belt (Neoproterozoic) Cratons (Archean – Paleoproterozoic) #### **Sao Franciso Craton: Precambrian Sequence (simplified)** #### **Paleoproterozoic Rift Geometries (schematic)** Fig. 16. Schematic illustration of the basin-fill evolution for the Terra Vermelha Group and related facies association. #### **Area of Interest (Northern Espinhaco & Chapada Diamantina)** ### **Surface Geology / Quarries** Neoproterozoic (635 My – 1 By) Mesoproterozoic (1.0 By – 1.6 By) Paleoproterozoic (1.6 By – 1.8 My) Archaean (> 2.5 By) Basic Intrusives (circa 850 My) **Ornamental Stone Quarries** **Metacongolmerate Quarries** ### A bit of Brazil In Bath can be found at.... Extras.... Facies architeture and geometry Lithoestratigraphy Facies association Lithofacies Record of a Statherian rift-sag basin in the Central Espinhaço Range: Facies characterization and Espigão Formation Volcanogenic lithofacies (FA5) Lv, Sv geochronology. Alice Fernanda de Oliveira Costa (2018) Large-scale cross-stratified Sic sandstone succession (FA4) Bi, Mi Iron Formation association Cavoada do Buraco Formation (FA3) Clast to matrix-suported Gmm, Gm, Sm, conglomerate with minor Sp, St, Slc sandstone lens association (FA2) Interbedded conglomerate GS and sandstone association (FA1) FA4 (m) FA3 3FA5 1000_T] FA5 FA2 FA4 FA4 500 FA4 FA4 FA1 FA2 Lithofacies Pau d'Arco Formation Espigão Formation Cavoada do Buraco Formation ★ Geochronology sample Fault Fig. 3. General stratigraphic columns showing disposition of the different facies association and stratigraphic units. Fig. 5. Lithofacies from FA1 association: (a) Massive matrix-to clast-supported conglomerate with disorganized framework; (b) layer of matrix-supported with scattered boulders; (c) layer of clast-supported conglomerate with angular clasts; (d) matrix-supported conglomerate separated by thin layers of sandstone (Sm). Fig. 7. Lithofacies from FA2 association: (a) Conglomerate Gmm with a sandstone St lens; (b) Matrix-supported polymictic conglomerate (Gm lithofacies); (c) Matrix-supported conglomerate with Bif's clasts; (d) Large-scale cross-stratified sandstone (Slc lithofacies) with planar-cross bedded sandstone bed (lithofacies Sp); (e) Enlarged view of lithofacies Sp marked by heavy minerals; (f) Enlarged view of lithofacies Slc. Sequence stratigraphy of the mixed wave-tidal-dominated Mesoproterozoic sedimentary succession in Chapada Diamantina Basin, Espinhaço supergroup– Ne/Brazil E. G. de Souza (2019) Fig. 4. A) Main characteristics of alluvial deposits (see Table 2); B) The single occurrence as a regular and thin layer with wide lateral extent, bounded by continuous and undulated surfaces; C) Layer details and representation of main larger clasts with vertically orientation; D) Imbricated and parallel clasts with the major axis to NW; E and F) Wide variation of form and composition of clasts, where the larger are subrounded to rounded while smallers are angular and low sphericity. https://geoportal.cprm.gov.br/geosgb/ https://geosgb.cprm.gov.br/geosgb/index_en.html # THE END!