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Location

Colorado Plateau



The geology



Geological Map 
of Meteor Crater 
Arizona

• Created by Gene Shoemaker, 
1960



The history

• Impact happened approx. 50,000 years ago

• 1871 - The first written report was by a man by the name of Franklin

• 1886 – iron-nickel meterorites were found by a sheep herder

• 1891 – site visited by USGS who deemed it to be volcanic

• 1903 – site was purchased by Daniel Moreau Barringer

• 1941 – the Barringer family entered into a lease with Bar T Bar Ranch 
    Company and formed the  Meteor Crater Enterprises Inc which    
    is still running today.
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A brief look at 
naturally occurring 
fission reactors

Anne Hunt



Uranium

• Actinide
• Atomic number 92



Uranium

• 2 isotopes 
• 235U

• 238U

• Both radioactive but half lives differ
• 235U: 700 million years

• 238U: 4.6 billion years

• Natural relative abundance
• 235U: 0.72% 

• 238U: 99.28% 

• Relative adundance is remarkably consistent worldwide…



Relative abundance
• …except in zones in the uranium 

mines at Oklo, Okelobondo and 
Bangombé in the Franceville 
Basin, Gabon

• In these zones
• 235U is low as 0.38 %

• an assembly of the end-member 
fission products which result from 
sustained nuclear reactions in a 
nuclear reactor



Geological setting

• Uraninite deposits
• located near the top of a succession 

of sandstones and conglomerates

• Uraninite deposits
• Formed by dissolution-precipitation 

processes

• From which approximately 28,000 
tonnes of uranium ore have been 
mined

• Age: 1950 ± 40 Ma - Proterozoic Gauthier-Lafaye et al 1996



Geological setting

• U-bearing conglomerates
• Buried by deltaic marine deposits of Upper FA formation and FB shales

• U(VI) oxides

• Shales were rich in organic matter
• Burial at depths of up to 4 km

• Temperature and pressure conditions of “oil window” causing conversion to 
hydrocarbons

• Hydrocarbons 
• migrated to the FA sandstone reservoir rock

• Accumulated in structural traps



Geological setting

• Uranium mineralisation
• fluids containing U(VI) oxides meet fluids bearing hydrocarbons

• hydrocarbons reduce U(VI) oxides to U(IV) oxides 

• Uranium is precipitated as uraninite (UO2) in the sandstone in
• pores 

• fractures

• Zones 
• uraninite seams are depleted in uranium but contain fission products



Nuclear fission

• Inherently unstable nuclei of radioactive isotopes “decay” 
spontaneously emitting a neutron

• Decay occurs more readily if provoked by disturbance of the structure 
of the nucleus

• Most readily caused by the absorption of a neutron

• Certain isotopes, termed “fissile”, will absorb a neutron
• 235U is fissile

• 238U is not fissile

235U + n = 236U



Nuclear fission

• The fissile nucleus 
becomes even more 
unstable and splits into
• 2 fission nuclei 
• 2 to 3 free neutrons 

travelling at high speed

 

236U

141Ba

92Kr



Nuclear fission

• Total mass of parts is very slightly 
less than original atom

• Missing mass has been converted 
into energy (released in the form 
of heat)
• E = 𝑚𝑐2 

 

236U

141Ba

92Kr



Nuclear fission

• These neutrons may go on to trigger fission of neighbouring fissile 
isotopes –  a chain reaction 

• A chain reaction may be
• Uncontrolled – runaway nuclear reaction – basis of atomic weapons or
• Controlled (“moderated”)  - basis of nuclear power 

• For a controlled nuclear reaction, neutron speed is crucial
• Too fast – will go through nuclei = no neutron capture – chain reaction shuts 

down
• Too slow – insufficient energy = no neutron capture – chain reaction shuts 

down
• Goldilocks speed = neutron capture followed by fission



Nuclear fission

• High speed neutrons 
• inelastic collisions with things of similar mass will slow down neutrons 

emitted by fission

• In liquid form, some water molecules dissociate into hydrogen ions and 
oxygen ions

• A hydrogen ion has the same mass as a neutron

• Water is a good moderator



Criteria for self-sustaining chain fission 
reactions i.e. a nuclear reactor

1. Sufficient fuel

2. Sufficiently high ratio of 235U: 238U 

3. Containment

4. Moderator



Conditions at Oklo

1. Sufficient fuel
• U ore seams are at least 0.5 m and 

typically contained in layers 2m 
thick

• Sufficient concentration of 
uranium-bearing minerals
• Minimum requirement of 10%

• In reactor zones, typically 20 to 87%

Remains of reactor at location 2



Conditions at Oklo

2. Sufficiently high ratio of 235U: 238U 
• Based on the half lives, extrapolation 

backwards to nearly 2Ga indicates that 
the relative abundance was 
approximately

U – 235: 3.68%

U – 238: 96.32%

• Fuel for nuclear power plant: 
approximately U – 235: 3 to 5%

Gauthier-Lafaye 2002



Conditions at Oklo

3. Containment
• Enveloped by clay minerals

• e.g. illite 

• Quartz-rich sandstone are 
natural neutron reflectors

• Sharp boundary between 

reactor zone and underlying 

sandstone

•  often with a thin layer of 

hematite (Fe2O3)

Upper FA sandstone

Uranium ore 20-87%

clay

hematite

reactor zone



Conditions at Oklo

4. Moderator
• Meteoric water seeping down 

through porous rocks and faults

Rector 9 from earlier figure Gauthier-Lafaye et al 1996



Duration of Oklo fission reactors

• Short-term
• Heat generated by the fission reactions caused the water to boil away
• Without a moderator, the chain reactions shut down
• When cooled sufficiently for water to flow back, neutron speed is moderated 

again and chain reactions recommence
• Calculations indicate

• Activity – approximately 30 minutes
• Shut down – approximately 2 hours 30 minutes
• i.e. a 3 hour cycle

• Long-term
• Differs between reactor sites – approximate range 62,000 to 270,000 years
• Analyses of abundances of fission products



Depleted Uranium

• Research into current conditions at Oklo - useful analogue in 
connection with disposal of nuclear fuels
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Burnham Beeches 
Hydrology
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Burnham Beeches – 25miles west of London 

Northern Edge of Thames Valley, Western Edge of London Basin 

River Thames



Ancient Beech Pollards – SSSI, thin sandy soils



Sir Henry Peak’s Drive

Water Observation
borehole BB32

Water observation bore holes



Hydrology the Basics

Water table

During summer – less rain, more evaporation, take-up by plants – water levels fall 

During winter – more rain, less evaporation, reduced plant take-up – water levels rise

more run-off, bogy areas and springs more active 



Burnham Beeches

Phase 1

Phase 2
Hunts Wood
Farm Phase 3

Leys Farm

East Burnham
 Quarry

Phase 1 – 1996-2006 

Despite strong opposition, in  1982 
permission was given to extract 
gravels from a lower Terrace (Boyn
Hill) south of Burnham Beeches.

Concerns about impact on Burnham 
Beeches by lowering water table. If a 
hydraulic connection  exists. In 1988 this 
resulted in a program of boreholes being 
drilled and monitored.



Winterhill
Terrace
Quaternary  
~0.45Ma

Lambeth
Group
Palaeocene

56-54Ma

Chalk – Upper 
Cretaceous  
~80Ma
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Burnham Beeches 
hydrological 
summary

DRY 
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Streams in and around Burnham Beeches



Springs develop at interface between 
gravels and clays, notice also break in slope



Clays and silts – springs, mires, streams.



Swilly Pond -May 9th 2010

Swilly Pond May 9th 2010



Swilly Pond -Jan 3rd 2010

Swilly pond Jan 3rd 2010



Thank you !

I hope this talk has inspired you to visit 
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A Bit of Brazil In Bath
Bath Christmas Social 2021 (Geology of Kitchen Worktops).

0 1m

Paleoproterozoic polymict metaconglomerate  (Eastern Brazil)

Star of The Show….

On public display in Bath…..

(Verde Marinace)



(Rosso Marinace)(Negro Marinace)

Varieties…

University College Hospital London (Monolith and Shadow sculpture by John Aitken) 

(Mixed)



Phanerozoic Cover

Pan-African Orogenic Belt 
(Neoproterozoic)

Cratons (Archean –  
Paleoproterozoic)

Phanerozoic Cover

Late Neoproterozoic 
(Pan-African Orogeny)

Early –Mid Neoproterozoic

Paleo – Mesoproterozoic

Archaen Basement

Geological Context



Sturtian 660 - 720

Rifting

Rifting

3500
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Rio Das Velhas / Mamona

Pan African Orogeny

Worktops!



Paleoproterozoic Rift Geometries (schematic)

100m

100-130m 50m



a) Actinolite Marble

b) Metadolostone
(showing bedding)

c) Metachert
(pyritic massive)

d) Phyllite

e) Quartzite with 
depositional with 
light (quartz-rich) 
and dark (tremolite 
& tourmaline-rich) 
layers

f) Magnetite- 
bearing banded 
iron formation

Metasediment Outcrops



Area of Interest (Northern Espinhaco & Chapada Diamantina) 



Paleoproterozoic  (1.6 By – 1.8 My)

Neoproterozoic (635 My – 1 By)

Surface Geology / Quarries

Oliveira dos Brejinhos

Morpara

Mesoproterozoic (1.0 By – 1.6 By)

Archaean (> 2.5 By)

Basic Intrusives  (circa 850 My)

Ornamental Stone Quarries

Metacongolmerate Quarries



A bit of Brazil In Bath can be found at….

LHS



LHS

RHS



Extras….



Record of a Statherian rift-sag basin in the Central 
Espinhaço Range: Facies characterization and 
geochronology. Alice Fernanda de Oliveira Costa (2018)



Fig. 5. Lithofacies from FA1 association: (a) Massive matrix-to clast-supported conglomerate with disorganized framework; (b) layer of 
matrix-supported with scattered boulders; (c) layer of clast-supported conglomerate with angular clasts; (d) matrix-supported conglomerate 
separated by thin layers of sandstone (Sm).





E. G. de Souza (2019)



https://geosgb.cprm.gov.br/geosgb/index_en.html

https://geoportal.cprm.gov.br/geosgb/



THE END!
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