

United Stat NEVADA Denvero UTAH COLORADO Las Vegas Meteor Crater Natural Landmark Angeles ARIZONA NEW MEXICO Phoenix San Diego Tucson Ciudad Juárez BAJA CALIFORNIA SONORA CHIHUAHUA COAHUILA Google Map data ©2023 Google, INEGI United Kingdom Terms

Location

Colorado Plateau

The geology

Geological Map of Meteor Crater Arizona

 Created by Gene Shoemaker, 1960

The history

- Impact happened approx. 50,000 years ago
- 1871 The first written report was by a man by the name of Franklin
- 1886 iron-nickel meterorites were found by a sheep herder
- 1891 site visited by USGS who deemed it to be volcanic
- 1903 site was purchased by Daniel Moreau Barringer
- 1941 the Barringer family entered into a lease with Bar T Bar Ranch Company and formed the Meteor Crater Enterprises Inc which is still running today.

THE END OF PART 1....

A brief look at naturally occurring fission reactors

Uranium

- Actinide
 - Atomic number 92

V-T-E Periodic table																			
Group	1 Hydrogen & alkali metals	Alkaline earth metals		3	4	5	6	7	8	9	10	11	12	13 Triels	14 Tetrels	15 Pnicto- gens	16 Chalco- gens	17 Halogens	18 Noble gases
Period 1	Hydro- gen 1 H 1.0080																		Helium 2 He 4.0026
2	Lithium 3 Li 6.94	Beryllium 4 Be 9.0122												5 B 10.81	6 C 12.011	Nitrogen 7 N 14.007	0xygen 8 0 15.999	Fluorine 9 F 18.998	Neon 10 Ne 20.180
3	Sodium 11 Na 22.990	Magne- sium 12 Mg 24.305												Alumin- ium 13 Al 26.982	Silicon 14 Si 28.085	Phosphorus 15 P 30.974	Sulfur 16 S 32.06	Chlorine 17 Cl 35.45	Argon 18 Ar 39.95
4	Potas- sium 19 K 39.098	20 Ca 40.078		Scandium 21 Sc 44.956	Titanium 22 Ti 47.867	Vana- dium 23 V 50.942	Chrom- ium 24 Cr 51.998	Manga- nese 25 Mn 54.938	26 Fe 55.845	27 Co 58.933	28 Ni 58.693	29 Cu 63.548	Zinc 30 Zn 65.38	31 Ga 69.723	Germa- nium 32 Ge 72.630	33 As 74.922	Sele- nium 34 Se 78.971	35 Br 79.904	36 Kr 83.798
5	Rubid- ium 37 Rb 85.468	Stront- ium 38 Sr 87.62		Yttrium 39 Y 88.906	Zirco- nium 40 Zr 91.224	41 Nb 92.908	Molyb- denum 42 Mo 95.95	Tech- netium 43 Tc [97]	Ruthe- nium 44 Ru 101.07	Rho- dium 45 Rh 102.91	Pallad- ium 46 Pd 108.42	47 Ag 107.87	Cad- mium 48 Cd 112.41	49 In 114.82	Tin 50 Sn 118.71	Anti- mony 51 Sb 121.76	Tellur- ium 52 Te 127.60	53 126.90	Xenon 54 Xe 131.29
6	Caesium 55 Cs 132.91	56 Ba 137.33	*	Lute- tium 71 Lu 174.97	72 Hf 178.49	Tanta- lum 73 Ta 180.95	Tung- sten 74 W 183.84	Rhe- nium 75 Re 186.21	76 Os 190.23	77 Ir 192.22	Plat- inum 78 Pt 195.08	79 Au 198.97	Mercury 80 Hg 200.59	Thallium 81 TI 204.38	82 Pb 207.2	Bismuth 83 Bi 208.98	Polo- nium 84 Po [209]	Astatine 85 At [210]	86 Rn [222]
7	Fran- cium 87 Fr [223]	88 Ra [226]	*	Lawren- cium 103 Lr [266]	Ruther- fordium 104 Rf [267]	Dub- nium 105 Db [268]	Sea- borgium 106 Sg [289]	Bohrium 107 Bh [270]	Has- sium 108 Hs [269]	Meit- nerium 109 Mt [278]	Darm- stadtium 110 Ds [281]	Roent- genium 111 Rg [282]	Coper- nicium 112 Cn [285]	Nihon- ium 113 Nh [286]	Flerov- ium 114 Fl [289]	Moscov- ium 115 Mc [290]	Liver- morium 116 Lv [293]	Tenness- ine 117 Ts [294]	Oga- nesson 118 Og [294]
			*	Lan- thanum 57 La 138.91	58 Ce 140.12	Praseo- dymium 59 Pr	Neo- dymium 60 Nd 144.24	Prome- thium 61 Pm	Sama- rium 62 Sm 150.36	Europ- ium 63 Eu 151.98	Gadolin- ium 64 Gd 157.25	Terbium 65 Tb 158.93	Dysprosium 66 Dy 162.50	Hol- mium 67 Ho 164.93	68 Er 167.26	Thulium 69 Tm 168.93	Ytter- bium 70 Yb 173.05		
			*	Actin- ium 89 Ac [227]	7horium 90 7h 232.04	/_	92 U 238.03	==	Pluto- nium 94 Pu [244]	Ameri- cium 95 Am [243]	Curium 96 Cm [247]	Berkel- ium 97 Bk [247]	Califor- nium 98 Cf [251]	Einstei- nium 99 Es [252]	Fer- mium 100 Fm [257]	Mende- levium 101 Md [258]	Nobel- ium 102 No [259]		

Uranium

- 2 isotopes
 - 235_U
 - 238
- Both radioactive but half lives differ
 - ²³⁵U: 700 million years
 - ²³⁸U: 4.6 billion years
- Natural relative abundance
 - ²³⁵U: 0.72%
 - ²³⁸U: 99.28%
 - Relative adundance is remarkably consistent worldwide...

Relative abundance

- ...except in zones in the uranium mines at Oklo, Okelobondo and Bangombé in the Franceville Basin, Gabon
- In these zones
 - ²³⁵U is low as 0.38 %
 - an assembly of the end-member fission products which result from sustained nuclear reactions in a nuclear reactor

Geological setting

- Uraninite deposits
 - located near the top of a succession of sandstones and conglomerates
- Uraninite deposits
 - Formed by dissolution-precipitation processes
 - From which approximately 28,000 tonnes of uranium ore have been mined
- Age: 1950 ± 40 Ma Proterozoic

Gauthier-Lafaye et al 1996

Geological setting

- U-bearing conglomerates
 - Buried by deltaic marine deposits of Upper FA formation and FB shales
 - U(VI) oxides
- Shales were rich in organic matter
 - Burial at depths of up to 4 km
 - Temperature and pressure conditions of "oil window" causing conversion to hydrocarbons
 - Hydrocarbons
 - migrated to the FA sandstone reservoir rock
 - Accumulated in structural traps

Geological setting

- Uranium mineralisation
 - fluids containing U(VI) oxides meet fluids bearing hydrocarbons
 - hydrocarbons reduce U(VI) oxides to U(IV) oxides
- Uranium is precipitated as uraninite (UO₂) in the sandstone in
 - pores
 - fractures
- Zones
 - uraninite seams are depleted in uranium but contain fission products

- Inherently unstable nuclei of radioactive isotopes "decay" spontaneously emitting a neutron
- Decay occurs more readily if provoked by disturbance of the structure of the nucleus
- Most readily caused by the absorption of a neutron
- Certain isotopes, termed "fissile", will absorb a neutron
 - ²³⁵U is fissile
 - ²³⁸U is not fissile

$$^{235}U + n = ^{236}U$$

- The fissile nucleus becomes even more unstable and splits into
 - 2 fission nuclei
 - 2 to 3 free neutrons travelling at high speed

- Total mass of parts is very slightly less than original atom
- Missing mass has been converted into energy (released in the form of heat)
 - $E = mc^2$

- These neutrons may go on to trigger fission of neighbouring fissile isotopes – a chain reaction
- A chain reaction may be
 - Uncontrolled runaway nuclear reaction basis of atomic weapons or
 - Controlled ("moderated") basis of nuclear power
- For a controlled nuclear reaction, neutron speed is crucial
 - Too fast will go through nuclei = no neutron capture chain reaction shuts down
 - Too slow insufficient energy = no neutron capture chain reaction shuts down
 - Goldilocks speed = neutron capture followed by fission

- High speed neutrons
 - inelastic collisions with things of similar mass will slow down neutrons emitted by fission
 - In liquid form, some water molecules dissociate into hydrogen ions and oxygen ions
 - A hydrogen ion has the same mass as a neutron
 - Water is a good moderator

Criteria for self-sustaining chain fission reactions i.e. a nuclear reactor

- 1. Sufficient fuel
- 2. Sufficiently high ratio of ²³⁵U: ²³⁸U
- 3. Containment
- 4. Moderator

1. Sufficient fuel

- U ore seams are at least 0.5 m and typically contained in layers 2m thick
- Sufficient concentration of uranium-bearing minerals
 - Minimum requirement of 10%
 - In reactor zones, typically 20 to 87%

Remains of reactor at location 2

- 2. Sufficiently high ratio of ²³⁵U: ²³⁸U
 - Based on the half lives, extrapolation backwards to nearly 2Ga indicates that the relative abundance was approximately

U – 235: 3.68%

U – 238: 96.32%

• Fuel for nuclear power plant: approximately U – 235: 3 to 5%

Gauthier-Lafaye 2002

3. Containment

- Enveloped by clay minerals
 - e.g. illite
- Quartz-rich sandstone are natural neutron reflectors
- Sharp boundary between reactor zone and underlying sandstone
 - often with a thin layer of hematite (Fe₂O₃)

4. Moderator

 Meteoric water seeping down through porous rocks and faults

Rector 9 from earlier figure Gauthier-Lafaye et al 1996

Duration of Oklo fission reactors

Short-term

- Heat generated by the fission reactions caused the water to boil away
- Without a moderator, the chain reactions shut down
- When cooled sufficiently for water to flow back, neutron speed is moderated again and chain reactions recommence
- Calculations indicate
 - Activity approximately 30 minutes
 - Shut down approximately 2 hours 30 minutes
 - i.e. a 3 hour cycle

Long-term

- Differs between reactor sites approximate range 62,000 to 270,000 years
- Analyses of abundances of fission products

Depleted Uranium

 Research into current conditions at Oklo - useful analogue in connection with disposal of nuclear fuels

References

- A. P. Meshik, C. M. Hohenberg, and O. V. Pravdivtseva "Record of Cycling Operation of the Natural Nuclear Reactor in the Oklo/Okelobondo Area in Gabon," Phys. Rev. Lett. 93, 182302 (2004).
- Janeczek, J. Mineralogy and Geochemistry of Natural Fission Reactors in Gabon. Reviews in Mineralogy Volume 38 p.321
- Meshik, A. P. (November 2005). <u>"The Workings of an Ancient Nuclear Reactor"</u>. Scientific American. **293** (5): 82–6, 88, 90–1. <u>Bibcode:2005SciAm.293e..82M</u>. <u>doi:10.1038/scientificamerican1105-82</u>. <u>PMID</u> <u>16318030</u>.
- Gauthier-Lafaye, F.; Holliger, P.; Blanc, P.-L. (1996). "Natural fission reactors in the Franceville Basin, Gabon: a review of the conditions and results of a "critical event" in a geologic system". Geochimica et Cosmochimica Acta. 60 (25): 4831–4852. <u>Bibcode</u>: 1996GeCoA..60.4831G. <u>doi</u>: 10.1016/S0016-7037(96)00245-1.
- Davis, E. D.; Gould, C. R.; Sharapov, E. I. (2014). "Oklo reactors and implications for nuclear science". International Journal of Modern Physics E. 23 (4): 1430007—236. <u>arXiv:1404.4948</u>. <u>Bibcode:2014IJMPE..2330007D</u>. <u>doi:10.1142/S0218301314300070</u>. <u>ISSN</u> 0218-3013. S2CID 118394767.
- Gauthier-Lafaye, F. (2002). "2 billion year old natural analogs for nuclear waste disposal: the natural nuclear fission reactors in Gabon (Africa)". Comptes Rendus Physique. 3 (7–8): 839–849. <u>Bibcode:2002CRPhy...3..839G. doi:10.1016/S1631-0705(02)01351-8</u>.

THE END OF PART 2.....

Burnham Beeches Hydrology

Bath Geological Society

Graham Hickman May 2023

Burnham Beeches – 25miles west of London

Northern Edge of Thames Valley, Western Edge of London Basin

Ancient Beech Pollards — SSSI, thin sandy soils

Water observation bore holes

Hydrology the Basics

During summer – less rain, more evaporation, take-up by plants – water levels fall

During winter – more rain, less evaporation, reduced plant take-up – water levels rise more run-off, bogy areas and springs more active

Despite strong opposition, in 1982 permission was given to extract gravels from a lower Terrace (Boyn Hill) south of Burnham Beeches.

Concerns about impact on Burnham Beeches by lowering water table. If a hydraulic connection exists. In 1988 this resulted in a program of boreholes being drilled and monitored.

East Burnham Quarry

Winterhill Terrace Quaternary ~0.45Ma

Lambeth

56-54Ma

Group

50

White Chalk with flints

Chalk – Upper Cretaceous ~80Ma

Streams in and around Burnham Beeches

Springs develop at interface between gravels and clays, notice also break in slope

Clays and silts – springs, mires, streams.

Swilly Pond May 9th 2010

Swilly pond Jan 3rd 2010

I hope this talk has inspired you to visit

THE END OF PART 3.....

A Bit of Brazil In Bath

Bath Christmas Social 2021 (Geology of Kitchen Worktops).

Star of The Show....

Paleoproterozoic polymict metaconglomerate (Eastern Brazil)

On public display in Bath.....

Varieties...

University College Hospital London (Monolith and Shadow sculpture by John Aitken)

Geological Context

Phanerozoic Cover

Pan-African Orogenic Belt (Neoproterozoic)

Cratons (Archean – Paleoproterozoic)

Sao Franciso Craton: Precambrian Sequence (simplified)

Paleoproterozoic Rift Geometries (schematic)

Fig. 16. Schematic illustration of the basin-fill evolution for the Terra Vermelha Group and related facies association.

Area of Interest (Northern Espinhaco & Chapada Diamantina)

Surface Geology / Quarries

Neoproterozoic (635 My – 1 By)

Mesoproterozoic (1.0 By – 1.6 By)

Paleoproterozoic (1.6 By – 1.8 My)

Archaean (> 2.5 By)

Basic Intrusives (circa 850 My)

Ornamental Stone Quarries

Metacongolmerate Quarries

A bit of Brazil In Bath can be found at....

Extras....

Facies architeture and geometry Lithoestratigraphy Facies association Lithofacies Record of a Statherian rift-sag basin in the Central Espinhaço Range: Facies characterization and Espigão Formation Volcanogenic lithofacies (FA5) Lv, Sv geochronology. Alice Fernanda de Oliveira Costa (2018) Large-scale cross-stratified Sic sandstone succession (FA4) Bi, Mi Iron Formation association Cavoada do Buraco Formation (FA3) Clast to matrix-suported Gmm, Gm, Sm, conglomerate with minor Sp, St, Slc sandstone lens association (FA2) Interbedded conglomerate GS and sandstone association (FA1) FA4 (m) FA3 3FA5 1000_T] FA5 FA2 FA4 FA4 500 FA4 FA4 FA1 FA2 Lithofacies Pau d'Arco Formation Espigão Formation Cavoada do Buraco Formation ★ Geochronology sample Fault

Fig. 3. General stratigraphic columns showing disposition of the different facies association and stratigraphic units.

Fig. 5. Lithofacies from FA1 association: (a) Massive matrix-to clast-supported conglomerate with disorganized framework; (b) layer of matrix-supported with scattered boulders; (c) layer of clast-supported conglomerate with angular clasts; (d) matrix-supported conglomerate separated by thin layers of sandstone (Sm).

Fig. 7. Lithofacies from FA2 association: (a) Conglomerate Gmm with a sandstone St lens; (b) Matrix-supported polymictic conglomerate (Gm lithofacies); (c) Matrix-supported conglomerate with Bif's clasts; (d) Large-scale cross-stratified sandstone (Slc lithofacies) with planar-cross bedded sandstone bed (lithofacies Sp); (e) Enlarged view of lithofacies Sp marked by heavy minerals; (f) Enlarged view of lithofacies Slc.

Sequence stratigraphy of the mixed wave-tidal-dominated Mesoproterozoic sedimentary succession in Chapada Diamantina Basin, Espinhaço supergroup– Ne/Brazil E. G. de Souza (2019)

Fig. 4. A) Main characteristics of alluvial deposits (see Table 2); B) The single occurrence as a regular and thin layer with wide lateral extent, bounded by continuous and undulated surfaces; C) Layer details and representation of main larger clasts with vertically orientation; D) Imbricated and parallel clasts with the major axis to NW; E and F) Wide variation of form and composition of clasts, where the larger are subrounded to rounded while smallers are angular and low sphericity.

https://geoportal.cprm.gov.br/geosgb/

https://geosgb.cprm.gov.br/geosgb/index_en.html

THE END!